Webinar: Dynamic Virtual Power Plant to combine flexibilities of dispatchable and non-dispatchable RES – the POSYTYF project

This webinar introduces the Dynamic Virtual Power Plant (DVPP) concept under development by the European Commission funded project POSYTYF, that aims to facilitate Renewable Energy Sources (RES) integration into the electrical network. After an overall project presentation, the webinar will introduce the proposed DVPP concept and detail the first project deliverable: the definition and specification of DVPP scenarios.

More info on https://posytyf-h2020.eu/

Join the webinar: 2021-11-18 at h 15:00 CET (UTC+1)

Key messages

  1. The new DVPP concept fully integrates the dynamic aspects at all levels: locally (for each RES generator), globally (for grid ancillary services and interaction with other neighbour elements of the grid) and economically (for internal optimal dispatch and participation to electricity markets)
  2. A DVPP is a set of Renewable Energy Sources (RES) along with a set of control and operation procedures. This means methodologies for:
    • choosing the participating RES, optimal and continuous operation as a whole (especially in case of loss of natural resources – e.g., wind, sun – on a part of the DVPP),
    • regulation (in the dynamic sense) to ensure local objectives for each generator,
    • participation to ancillary services of the DVPP as a unit and to diminish negative effects of interaction with neighbour dynamics elements of the power system,
    • integration in both actual power systems scenarios (with mixed classic and power electronics-based generation) and future ones with high degree of RES penetration.

Intended audience

  • Power system engineers, from students to senior experts.

 

Speakers

Bogdan Marinescu

Ecole Centrale Nantes

Oriol Gomis Bellmunt

Universidad Politecnica de Catalunya

Carlos Collados Rodriguez

Universidad Politecnica de Catalunya

 

Speakers Bio

Bogdan Marinescu was born in 1969 in Bucharest, Romania. He received the Engineering degree from the Polytechnical Institute of Bucharest in 1992, the PhD from Université Paris Sud-Orsay, France in 1997 and the “Habilitation à diriger des recherches” from Ecole Normale Supérieure de Cachan, France in 2010. He is currently a Professor in Ecole Centrale Nantes and LS2N laboratory where he is the Head of the chair “Analysis and control of power grids”  (2014-2024) and the Coordinator of the European project POSYTYF (Research & Innovation Action, 2020-2023). In the first part of his carrier, he was active in R&D divisions of industry (EDF and RTE) and as a part-time professor (especially from 2006 to 2012 in Ecole Normale Supérieure de Cachan). His main fields of interest are the theory and applications of linear systems, robust control and power systems engineering.

Oriol Gomis-Bellmunt received the degree in industrial engineering from the School of Industrial Engineering of Barcelona (ETSEIB), Technical University of Catalonia (UPC), Barcelona, Spain, in 2001 and the doctoral degree in electrical engineering from the UPC in 2007. In 1999, he joined Engitrol SL where he worked as Project Engineer in the automation and control industry. Since 2004, he has been with the Electrical Engineering Department of the UPC where he is Professor and participates in the CITCEA-UPC Research Group. He is involved in a number of research projects in national and international consortiums (medium-long term research oriented) and technology transfer projects with several manufacturers, operators and developers worldwide (short-term research and practical application). His research interests are focused on the understanding of modern power systems, based on power electronics (HVDC, FACTS, energy storage and renewables) and grid integration of renewable energy, especially onshore and offshore wind and solar photovoltaics. Since 2020, he is an ICREA Academia researcher. Since 2021, he is IEEE Fellow.

Carlos Collados-Rodriguez received the Bachelor’s degree in Energy Engineering and the Master’s degree in Industrial Engineering from the Technical University of Catalonia (UPC), Barcelona, Spain, in 2014 and 2017 respectively. He joined CITCEA-UPC research group in 2013, where he is currently pursuing the Ph.D. degree in Electrical Engineering. His research interests include power converters, HVDC systems, grid integration of renewable energy and power system analysis, especially in power-electronics-dominated power systems.

Readings

  1. B. Marinescu, O. Gomis-Bellmunt, F. Dörfler, H. Schulte, L. Sigrist, Dynamic Virtual Power Plant: A New Concept for Grid Integration of Renewable Energy Sources, https://arxiv.org/abs/2108.00153.
  1. Deliverable 1.1 when publicly released: Definition and specification of Dynamic Virtual Power Plant (DVPP) scenarios.
Privacy Overview

1.- What are cookies?

Cookies are text files that are stored on the visitor’s terminal that store and retrieve information about navigation. Section 3 of this policy indicates the specific use of cookies on this website.

If you want more information about cookies, please see the following links:

 

2.- How to accept, deny or revoke consent for the installation of cookies

The website has a consent manager that allows users to accept or reject the installation of cookies when accessing it.

You can also delete cookies using the browser settings options. These allow you to adjust privacy levels, such as denying all cookies or deleting saved ones. To modify these parameters, consult the manufacturer or review the following documentation: Google ChromeMicrosoft EdgeMozilla FirefoxSafariBraveOperaiOS-Safari, and Android-Chrome.

If you restrict or block some or all cookies from this website, some of the functionalities or services provided on the page may not be available.

 

3.- Types of cookies used on this website

  • Technical cookies: These allow the user to navigate through a website, platform or application and use the different options or services that exist on it, including those used by the editor to manage and operate the website and enable its functions and services, such as controlling traffic and data communication, identifying the session, accessing restricted access parts, remembering the elements that make up an order, carrying out the purchase process of an order, managing payment, controlling fraud linked to the security of the service, requesting registration or participation in an event, counting visits for software license billing purposes, using security elements during navigation, storing content for video or sound dissemination, enabling dynamic content (e.g., loading animation of text or image) or sharing content through social networks. Also included in this category, due to their technical nature, are cookies that allow the most efficient management of advertising spaces that the editor has included on a website, application or platform based on criteria such as edited content, without collecting information from users for other purposes, such as personalizing that advertising content or other content.
  • Analysis or measurement cookies: These allow the responsible party to track and analyse the behaviour of users of the websites to which they are linked, including quantifying the impacts of advertisements. The information collected through this type of cookie is used to measure the activity of websites, applications or platforms, to introduce improvements based on the analysis of the usage data made by users of the service.

 

4.- List of cookies on this website

The provider Cactus uses the cookie "phpsessid".

Purpose: Session identifier provided by the server. It allows the user to view the website and interact with it. It is strictly necessary for the proper functioning of the page.

 

The provider Cactus uses the cookie "cookie_notice_accepted".

Purpose: Stores the user's acceptance of the website's cookie policy.

 

Google Analytics uses the cookie "_ga".

Purpose: Anonymous information about users' browsing of the website is collected in order to obtain statistics on visits received.

Google Privacy Policy Google Analytics Opt-out Add-on

Some of the cookies used on this website belong to third parties, different from the responsible party with whom service provision contracts are formalized. You can consult the complete information about these third parties in the previous link, where in the cookie declaration, you can differentiate between own cookies, which correspond to those where the provider field matches the link to this website, and third-party cookies, which are those where the provider does not match the URL of this website.

We inform you that some of our cookie providers may transfer data to third countries. You can find out about transfers to third countries, if any, made by the third parties identified in this cookie policy in their corresponding policies, through each one's privacy policy, where they will indicate the transfers to third countries they make, if any.