August 28, 2013


Smarter & Stronger Power Transmission: Review of feasible technologies for enhanced capacity and flexibility

Transmission and distribution (T&D) systems are facing new challenges linked with the introduction in the generation mix of a progressively increasing share of unpredictable energy sources and variable generation from renewable energy sources (RES).

Changing patterns of demand that new types of load such as electric vehicles (EV) will introduce large and unpredictable fluctuations in the power balance as well as variations in voltage can jeopardize the quality and availability of power. The T&D system has to be stronger and smarter to provide the real-time flexibility needed to efficiently handle the new conditions. Investment needs in the power T&D infrastructure are large and require long term planning and deployment. The environmental concerns and public acceptance issues that often arise when constructing additional conventional transmission lines will require more efficient solutions with lower environmental impact.

This Discussion Paper from ISGAN Annex 6 Power Transmission & Distribution Systems Task 3 and 4 focuses on “Smarter & Stronger Power Transmission” and is a review of feasible technologies for enhanced transmission capacity and flexibility in terms of status and deployment. This includes both the primary AC and DC technology for the high voltage transmission grid as well as the information and communication technology (ICT) required to efficiently supervise and operate the power system. Focus is on the development of power electronics including flexible AC transmission (FACTS) and high voltage DC (HVDC), the standardization within ICT such as IEC 61850 and Common Information Model (CIM) in order to obtain vendor independent interoperability as well as the progress of wide area monitoring, protection and control (WAMPAC). The combination of smarter ICT applications together with power electronics such as FACTS and HVDC can be described as a digitalization of the power system operation offering the required flexibility. Most of the examples given are from the Nordic European power system, reflecting the participation of the authors from ISGAN Annex 6 Task 3 and 4, with additional input from North America and selected International case studies.


read more
share

February 28, 2013


Flexible Power Delivery Systems: An Overview of Policies and Regulations and Expansion Planning and Market Analysis for the United States and Europe

With the changing dynamics of electric grid systems around the world, decision-makers – both institutional and technological – are facing numerous new challenges to operating, planning, and expanding their systems.

New technologies are challenging conventional regulatory regimes and new policies and consumer demands are similarly challenging the currently available technologies. For example, as the demand for cleaner energy sources gains ground all over the globe, technological improvements are necessary to integrate large amounts of variable energy sources such as solar and wind into various electricity systems, while ensuring acceptable levels of reliability and security of the system. Similarly, as consumers engage more with electricity systems, demand profiles and consumer choice, among other demand-side elements, are also challenging our system, providing opportunities for demand-side management and related technologies. In this rapidly changing landscape, regulators and policy-makers must consider how consumer participation and new technologies interact with the market place.

This discussion paper from ISGAN Annex 6 Power Transmission & Distribution Systems Tasks 1 and 2 focuses on achieving flexible power delivery by examining the policies and regulations, as well as expansion, planning, and market analysis for the United States and Europe. This review looks at how policies and regulations have changed to accommodate new developments in the operation, planning, and market areas of each grid system. Additionally, it highlights certain efforts undertaken to better understand and implement the policy and regulatory changes in these processes as both the United States and Europe work towards achieving a modernized grid system, specifically including the increased deployment and use of smart grid technologies, e.g., synchrophasor measurement technologies, net metering, distributed generation, energy storage, advanced metering infrastructure.

About ISGAN Discussion Papers: ISGAN discussion papers are meant as input documents to the global discussion about smart grids. Each is a statement by the author(s) regarding a topic of international interest. They reflect works in progress in the development of smart grids in the different regions of the world. Their aim is not to communicate a final outcome or to advise decision-makers, rather to lay the ground work for further research and analysis.


read more
share

×